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1.0 Introduction 
In recent years the federal govern- 

ment has mounted several large -scale 
evaluations of the effectiveness of var- 
ious educational programs. For a variety 
of practical, ethical, and political 
reasons, strict adherence to the canons 
of experimental research design has gen- 
erally been impossible. Our interest in 
the general problem of analyzing non - 
experimental data has grown out of our 
involvement in two major evaluations: 
Head Start Planned Variation and Follow 
Through. Both of these studies were 
quasi -experiments involving the compar- 
ison of several curricular models, but 
with no random assignment of subjects to 
treatments. 

In the last few years there has been 
much controversy over how to draw valid 
inferences from such quasi- experiments, 
and, indeed, whether it is even possible 
to do so. Tucker, Damarin, and Messick 
(1966) have suggested residual analysis. 
Cronbach and Furby (1970) and Werts and 
Linn (1970) have argued that the General 
Linear Model and, in particular, analysis 
of covariance, is the only appropriate 
approach. More recently, Smith (1972) 
and Kenny (1975) have suggested that 
gain scores may in fact be the answer. 
In addition, several other approaches 
have been suggested in this context, 
including direct and indirect standardi- 
zation (Wiley, 1971), and matching (Rubin, 
1973). We too have contributed to the 
confusion with our value -added analysis 
(Bryk and Weisberg, 1974, 1976). 

On the other hand such writers as 
Lord (1967) and Campbell and Erlebacher 
(1970) have pointed to problems in the 
use of such adjustment strategies. These 
problems have led some (c.f. Gilbert, 
Light and Mosteller [1975] and Riecken 
and Boruch [1974]) to push hard for the 
implementation of randomization if at 
all possible. 

In trying to understand the extent 
to which various analysis strategies 
could provide unbiased estimates of 
treatment effects, we became frustrated 
by the absence in the literature of 
realistic models which focus on the 
process by which the data are generated. 
Some educational researchers seem to have 
valuable intuition about the processes 
generating quasi -experimental data, but 
they do not express these ideas in the 
form of a coherent model. Most mathe- 
matically- oriented methodologists on the 
other hand, seem to accept uncritically 
the general linear model which has been 
so useful in many non -educational settings. 
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In thinking about quasi -experimental 
data, we gradually reached the conclusion 
that three main factors must be consid- 
ered: (1) the nature of individual 
growth; (2) the process by which individ- 
uals are assigned to treatment groups; 
and (3) the nature of the treatment 
effect. 

In education as in many other 
domains, we are typically examining 
systems which are fundamentally dynamic 
and adaptive. Individuals are growing, 
and changing in interaction with one 
another and the environment even in the 
absence of any external intervention. 
Such phenomena are not explicitly consid- 
ered in the linear model, but are rather 
treated as unmeasured nuisance variables. 

Second, explicit consideration of 
the process by which individuals are 
assigned to groups is almost non -existent 
in the literature (Kenny [1975] is an 
exception). Most analysts begin by 
assuming the convenient fiction that there 
exist two distinct populations from which 
the program and control groups are ran- 
domly selected. Each population is 
characterized by a multivariate (usually 
normal) distribution on the variables of 
interest. The bias reduction properties 
of various strategies are examined in 
terms of the parameters of these two 
distributions (see for example, Cochran, 
and Rubin, [1974 ]. 

An alternative way to conceptualize 
this situation is to imagine that we are 
sampling from a single population of 
individuals and then assigning them in a 
non -random fashion to a program and con- 
trol group. We prefer this latter fiction 
because it allows us to focus explicitly 
on the mechanism of assigning subjects to 
programs. 

Third, the treatment effect is tradi- 
tionally modeled as a constant increment 
for all subjects, although consideration 
of "aptitude- treatment interactions" 
permits some flexibility. We propose to 
consider models in which the treatment 
effect may be a function of the individ- 
ual's own status or even the group con- 
text in which he or she is developing. 

Our purpose in this paper is to 
assess the ability of various data analy- 
sis strategies to remove biases which 
result from nonrandom assignment of sub- 
jects to groups. To do this, we examine 
each technique in terms of a mathematical 
model which represents somewhat realis- 
tically the way quasi -experimental data 



arise. The remainder of this paper 
consists of four sections. 

First, we discuss briefly the 
various analysis strategies which have 
been suggested for analyzing educational 
quasi- experiments. A set of sixteen 
strategies whose properties are to be 
explored is presented. 

In section 3 we present in detail 
the mathematical model upon which this 
investigation is based. Explicitly 
represented in this general model are 
specific models of the three main pro- 
cesses mentioned above: individual 
growth, assignment of subjects to groups, 
and the treatment effect. 

In section we develop some analyt- 
ical results under the assumption of a 
relatively simple model. Some of these 
results relate to growth systems in 
general and may have broad application 
in studying developmental processes. 
Others relate more specifically to the 
problem of eliminating bias in the 
analysis of quasi -experimental data. 

In section 5 we discuss the com- 
puter simulation program based on the 
mathematical model described in section 
3. This program has been used to 
explore the properties of strategies in 
more complex situations. Results of 
some simulation runs are presented. 

2.0 Analysis Strategies 
In this section we discuss briefly 

the set of analysis strategies whose 
properties are to be studied. For sim- 
plicity, we consider only the situation 
where one treatment group is being com- 
pared to one control group. We also 
assume that the information available to 
us consists of the pre -test, the post- 
test, and the age for each individual. 
Some methods make use of other "co- 
variates" besides pre -test and age. We 
are including these two because (1) they 
are generally quite important in educa- 
tional contexts and (2) the inclusion of 
other variables would add tremendous 
complexity. 

Most techniques for analyzing quasi - 
experimental data fall under the general 
heading of linear adjustments. These 
adjustments have the following general 
form: 

Ye- 1p- 
2c) 
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where 

r=true treatment effect 

)= 
post -test mean for program 
(control) group 

pre -test mean for program 
(control) group 

=mean age at pre -test time 
for program (control) group 

The coefficients and y characterize the 
particular linear adjustment method. For 
example, if ß = 0 and y = 0, our estimate 
of is the simple difference of post- 
test means; while if ß.= 1 and y = 0, 

we have gain scores. In all, thirteen 
such linear adjustment strategies have 
been listed in Table 1. 

In addition to the linear adjust- 
ments, we also consider two forms of 
adjustment by subclassification (Cochran, 
1968) which is a type of standardization 
(Wiley, 1971). The basic idea is to 
estimate the post -test means the treat- 
ment groups would have had if the pre- 
test distribution of the treatment group 
were the same as that of the controls. 
To approximate this, class boundaries are 
found which divide the pre -test distrib- 
ution for the control group into six 
approximately equal size classes (in 
terms of frequency). Subjects in all 
groups are assigned to a class on the 
basis of these pre -test boundaries. 
Post -test means are computed for each 
pre -test group. These six means are then 
proportionally weighted by the number in 
the cell to form an overall mean which is 
compared with the control group mean. 
The difference between the two is our 
subclassification estimate of the treat- 
ment effect. 

The second subclassification tech- 
nique is based on both the pre -test and 
age. We have elected to divide each 
variable into three classes, resulting 
in a nine -cell design. 

Another strategy considered is a 
variant of the value -added approach 
which we have developed recently (Bryk 
and Weisberg, 1974). This method does 
not utilize the control group information 
per se. Rather than using the relation- 
ship between pre -test and post -test, the 
value -added technique utilizes the in- 
dividual's pre -test status and age to 
project a post -test status in the absence 
of intervention. The actual post -test 
is then compared to the projected post- 
test. The average difference across 
subjects within the treatment group is an 
estimate of the treatment effect. In its 
application here, we use the ordinary 



least squares regression of the pre -test 
on age as the basis for our projections. 

Another approach to analysis which 
has received some attention is matching 
(c.f. Rubin, 1974). Matching is, how- 
ever, most effective as a component of 
the design rather than the analysis. 
Post hoc matching is possible, but its 
effectiveness generally depends criti- 
cally on having a control group much 
larger than the treatment group, so 
that good matches can be found. These 
factors, we felt, would make a fair com- 
parison of matching with the other 
analysis strategies mentioned above very 
difficult. 

3.0 The Model 
In this section we present a gen- 

eral mathematical model to represent the 
way in which quasi- experimental data 
arise in many educational settings in- 
volving growth. As in most models of 
dynamic processes, we shall employ the 
differential equation as our basic con- 
ceptual tool. As mentioned above, the 
model has three main components; repre- 
senting the processes of natural growth, 
the effect of a treatment, and the 
assignment of individuals to treatment 
groups. 

3.1 Natural Growth 
We assume that each individual is 

characterized by a growth rate at any 
point in time which would apply in the 
absence of the experimental program. 
This growth rate may in general be a 
function of one or more parameters and 
of the individual's current status. Let 
G i (t) represent individual i's natural 
growth function in terms of some dimen- 
sion of interest. Moreover, let = 

represent a vector of para- 
meters characterizing individual in 
growth rate. Then G can be defined as 
that function which satisfies a differ- 
ential equation of the form 

DG 

at = Gi(t)) (3.1) 

Of course there are many possible 
candidates for gi. We will present four 
which seem particularly useful. The 
first two are selected because of their 
simplicity. The latter two suggest them- 
selves because they can model a broad 
range of non -linear growth, and have 
seen some use in modeling certain devel- 
opmental phenomena, such as human 
physical growth (Bock et al, 1973). 

These are given by 

a 

9 G 
at 

Gi 

at 
= - Gi) 

a Gi 
= G1(1-Gi) 

dt 

In analyzing the first three of 
these models, it is convenient to define 
toi as the onset time for individual i. 
That is we assume 

Gi(t)) = 

for t < 
toii 

(3.6) 

and that g has one of the above forms for 
t > toi. For the fourth case, it is con- 
venient to define t.51 as the time at 
which half of "full" growth is reached. 
With this notation we can express the 
natural growth curves as 

G (t)=,(t-t ) 

(linear) 

G1(t) toi) -toi)2 

(quadratic) 

-(t -toi) Gi(t) =1 -e 

(exponential) 

Gi(t)= 1 

l+e i3t-t.5i) 
(logistic) (3.10) 

So far we have considered the growth 
for each individual. What about the pop- 
ulation? To model the process of 
selecting a sample from a given popula- 
tion, we propose to consider the 's as 
random variables with theoreticalI 
reasonable distributions. The actual 
choice of specific theoretical distrib- 
utions for the growth parameters, will 
depend on the substantive meaning of the 
parameters themselves. 

We shall assume that different para- 
meters are independent. Particularly at 

the extremes of the distribution, this 
assumption is perhaps not strictly valid. 
We do not judge this to be a serious 
enough weakness, however, to warrant the 
additional complexity of joint growth 
parameter distributions. 

To model some situations and be- 
cause it is often used as a covariate in 
developmental research, it is useful to 

(3.2) have a representation of each individ- 
ual's age. To accomplish this, we do not, 
generate toi, the onset time directly, 
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but as the sum of time of birth and 
onset age. Let 

Then 

and 

bitime of birth for individual i 

=onset age for individual i 

toi =bi +di 

ai(t) =t -bi =age at time t 

(3.11) 

First let 

t1 =start of the program 
(time of pre -test) 

t =end of program (time of post -test) 
2 

We assume that the program operates 
between times t and t , and measure- 
ments are obtaizled at these times. 

We conceive of the program as 
effecting an alteration in the natural 
growth rate. We define a treatment 

(3.12) effect rate, 

Finally, to make our model of growth 
more realistic, we allow the possibility 
of a random component to the growth. 
The systematic natural growth discussed 
so far may be considered as the smoothed 
trend underlying an observed time series. 
The random component reflects in part 
the instability characterizing our as- 
sessment instruments which is commonly 
termed measurement error. The random 
component also reflects, however, char- 
acteristics of individuals. While con- 
ceptually it may be useful to consider 
individual growth over a period of time 
as a smooth curve, the system- 
atic component --in reality, the individ- 
ual growth also consists of discontinu- 
ities, instability, and real variation. 
Thus, the random component is meant to 
include measurement error, but is not 
limited exclusively to it. 

Mathematically we represent the 
random component by 

where 

Ri(t) = random component of growth 

E (Ri(t)IG) = 

ti= o for t < t 

=h(Ei,Gi(t)) for t< t 

=0 for t >t2 

(3.16) 

where e is a vector or parameters char- 
acterizing individual i. The treatment 
effect rate can in principle be a func- 
tion of one or more parameters as well as 
the current growth status. By proper 
choice of the h function, we can model 
a broad range of educational paradigms. 

We can now define a treatment aug- 
mented growth rate, 

a a Ii 

at t 
(3.17) 

where =l if i is in the program 
group 

0 if i is in the control 
group 

(3.13) and a treatment augmented growth curve, 

s(t) =1 asi 
at 

We define the observed score at time t by 
Cov (Ri(tz), Ri(t2)) = (3.14) 

The observed score for individual i 
at time t is then represented by 

Y(t) = Gi(t) + Ri(t) (3.15) 

3.2 Treatment Effect 
So far we have developed a model to 

represent growth of a particular group 
on a particular dimension. Now suppose 
that during some specified period of 
time, .a subset of the group is to be 
exposed to an experimental program. We 
put off until the next section the ques- 
tion of how this group is to be selected, 
and focus here on representing the treat- 
ment effect for this group. 
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(3.18) 

Yi(t)= Si(t) +Ri(t) (3.19) 

and for any individual the treatment 
effect at time t is given by 

Ti = Si(t2) GA(t2) (3.20) 

For example, in the simple case of 
a linear growth system with a constant 
treatment effect rate, 

a si 

at 



This yields upon integration, 

s(t) =11 (t- t -ti) 

for t < t< 
t 

1- - 2 

and a constant treatment effect across 
the subjects at t2 of 

T = E(t2 -ti) (3.22) 

3.3 Assignment Process 
In this section we discuss the model 

to represent the assignment process. Let 
us assume that the total sample consists 
of n individuals, and that, of these, 
n are to be assigned to the program 
group and n to the control group 
(nc + = 

We want to be able to represent a 
general situation where each individual's 
probability of being assigned to the pro- 
gram group may be random or may to vary- 
ing degrees depend on his growth para- 
meter values. Moreover, rather than 
basing selection directly on values of 
the parameter, we prefer to view selec- 
tion as sorting the total sample accord- 
ing to relative values. Thus, our 
algorithm will incorporate the idea that 
those n individuals who are highest in 
terms or some criterion (which may 
depend on their growth characteristics) 
will be assigned to the control group, 
and the lowest to the program group. 

One might argue that we also ought 
to consider assignment on the basis of 
sociological or demographic variables. 
Kenny (1975), using a path analysis 
model, takes just this approach. While 
clearly these variables may operate to 
determine who receives services --for 
example, income qualifications for com- 
pensatory education programs --they are 
not operant variables in our causal 
models of human development. Rather, we 
view these gross observables as reflec- 
tions of the normally unmeasured individ- 
ual growth curve parameters. When these 
growth parameters are available, however, 
assignment to groups on this basis ex- 
tracts all of the useful information 
normally supplied by the gross proxy 
variables. 

The assignment of units to the pro- 
gram and control groups will be deter- 
mined through the use of an assignment 
variable, Ai. Let us define 

K 

Ai 

where 

wK +ldi 

where (3.23) 
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and 

growth parameters in a 
standardized (unit) 
metric (3.24) 

d. N(0,1)= random normal 
deviate 

wK+l-1-E 

(3.25) 

(3.26) 

The assignment variable, Ai, is a linear 
combination of two components. The first 
component is itself a linear combination 
of the growth parameters. These para- 
meters are expressed now in standardized 
form, to adjust for potentially different 
metrics. The second component is a ran- 
dom normal deviate, generated indepen- 
dently for each subject. Any set of 
weights, [w where (k= 1...K +l)], can be 
specified. gThis permits total flexibil- 
ity to model situations where assignment 
is at random--w,+,=1--to where assign- 
ment might be bsdd totally on starting 
point - -w =1. One question this permits 
us to explore is, "How much randomness 
is good enough ?" 

Once we have chosen a set of weights, 
w , and sampled for each subject an R4, 

can compute an Ai. If we rank order 
the subjects on the basis of their values 
on Ai, we can then assign the bottom 
n 

percent to the program group, and 

the remainder to the control group. In 
other than pure random assignment situ- 
ations, this should be a reasonable 
replica of real -world selection processes. 

Recalling the definition of from 
the previous section, we can write our 
assignment algorithm mathematically as 

Ai A(n ) _> = I 

Ai > A(n ) 
= 0 

where A(k) represents the k -th order 
statistic out of the sample of size n. 

4.0 Analysis of the Linear Growth System 

4.1 The Linear Model 
We seek to explore in our work the 

implications of taking a developmental or 
growth perspective when examining quasi - 
experimental data. As described above, 
we assume an underlying growth system 
from which we have snapshots at times ti 
and t2, the pre and post test respectively. 

For the linear system, 



the rate of growth for each subject i is 
some constant value Tri, but in general 
the values of the /Tits will vary across 
subjects to form some distribution. Thus, 
we have 

Gi(t) = -toi) where (4.1) 

= growth rate for subject i 

toi = date of growth onset 

In terms of analysis of this model, 
let us consider the simplest case where 
the treatment effect rate is a constant, 
e, for all subjects 

Thus, 

ti<t<t2 

o elsewhere 

ti = + and, (4.2) 

S1(t)= toi) {t -ti) 

ti<t<t2 (4.3) 

At post test time t2, for subjects in the 
control group, 

Sic(t2) = -toi) and 

for subjects in the program group, 

Sip (t2) =a +ni(t2 where 

The full model presented in section 3, 
also includes a random component Ri(t). 
Since we are at present only considering 
the simple classical measurement model 
(errors have zero mean, constant variance, 
and are independent of systematic growth) 
this added complexity would provide little 
insight. Thus, we will focus in this 
section only on systematic growth Si(t). 

4.2 Properties of the Linear System 
One question we are most interested 

in exploring is the behavior of the basic 
statistics -- means, variances, covariances 
--for these growth systems. This is an 
important issue since almost all of the 
analysis strategies presented in section 
2 are simple functions of these basic 
statistics. 

Let 

E(7r) = , Var (7r) = (4.4) 

E(to) = Var(to) = (4.5) 

Assuming that to and are independent, it 
follows that 

E[G(t)] = -i) (4.6) 
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To find the covariance between G(ti) and 
G(t2), we apply the definition of the co- 
variance and equation (4.6) to obtain 

Theorem: For the linear growth system 
with and to independent we have 

E[G(t)] = 

Cov(G(t)G(tz)) = 

(t ) (t T T T T (4.7) 

Several useful corrolaries follow 
fromthis result. For example, if ti =t2= 
t, equation (4.7) reduces to 

Var[G(t)] = (t- 

(4.8) 

Second, let us define as the corre- 
lation between G(ti) and G(t2). From 
(4.9) and (4.10) we find 

(t (t 2 

i, 

(4.9) 

From equation (4.9) we can study 
the behavior of the correlation coef- 
ficient as each of the parameters varies. 
Since many longitudinal studies have 
looked at the pattern of correlations 
between time points, equation (4.9) may 
be helpful in interpreting these results. 

4.3 Application to Adjustment Strategies 
in the Analysis of Quasi- Experi- 
mental Data 
Our primary interest is in examining 

growth systems where there is non -random 
assignment of subjects to groups. This 
results in a different distribution 
across the two groups for the growth 
parameters. The consequences for com- 
monly employed analysis strategies are 
the focus of this investigation. 

Let 
E Gi(t) E -toi) 

G. (t) 
-1 _i =1 

n n 

t 
o. n 

Then it is easy to show that 

G. (t) =n. (t -to.)+ 
(t -to. ) 

(4.10) 

Thus, the mean growth curve G.(t) for a 
sample is simply the natural growth curve 
in the parameter means plus the sample 



covariance. Moreover, if and to are 
assumed independent we have 

E[G.(t)]= -to.) (4.1.1) 

Suppose now that for the program 
group 

S.p(2) a +II.p(t2 -to.p) 

and for the control group, 

S.c(2) 

Now since II and to are independent, 
it follows that H. and to, are indepen- 
dent. Moreover, 

E(II.) = 

E(to.) = 

Thus, 

E[S.p(2)- S.c(2)] = 

a (4.12) 

and we have a bias which depends on 
PTp, and uTC and will generally be 

icon -zero. In fact, if non -random assign- 
ment results in either or 

bias will result. 

Now let us consider the consequences 
of using a linear adjustment strategy in 
an attempt to obtain an unbiased estimate 
of a. The general form of a linear 
adjustment using the pre -test as a 
covariate is 

And, 

= S,p(2)-S,C(2)-8(S.p(1)-S,c(1)) 
(4.13) 

E(á)= 

-ßuTp (t (t 

Solving for we find that linear 
adjustment will be unbiased if and only 
if = *, where 

(t 
2- 

(t -uTC ) 
Tp(tl- (4.15) 

This is a rather remarkable result. 
It represents the theoretically "correct" 
adjustment coefficient under our model. 

One special case is of particular 
interest. Suppose Then the 
above expression reduces to $ * =1. That 
is, if assignment is effectively on the 
basis of to but not on then use of 
gain scores provides an unbiased estimate 
of a. 
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A rather straightforward question to 
ask at this point is what happens if we 
calculate an estimate of in one of the 
usual ways, and substitute the result in 
(4.13)? Unfortunately, the answer is not 
so straightforward. 

Under the usual linear model, it is 
assumed that 

E(Si(2)) = a + OSi(1) 

conditional on any given value of Si(1). 
This leads to the result that any unbiased 
estimator of ß can be substituted for ß, 
and the linear adjustment will remain 
unbiased. 

Under our model, it does not make 
sense to condition on S(1). Thus, if an 
estimator based on the data is used in 
4.12), its distribution may be quite 
complex. This is one reason why we 
developed the simulation model described 
in the next section. 

While the exact bias is complex, we 
can obtain some useful insights analyt- 
ically. From equations (4.7 ) and (4.$ ) 

we can obrain an expression for the pop- 
ulation regression coefficient of S(2) on 
S(1): 

(t 
T T T T (4. 16) 

The sample regression coefficient 
for the program group will be a consistent 
(though not necessarily unbiased) estim- 
ator of this expression for each group. 
Let us call the expression for the pro- 
gram group and for the control group 
ßc. In general Thus, the data 
analyst may detect heterogeneity of re- 
gression and be unwilling to proceed with 
the analysis of covariance. If he does 
calculate an estimate on the basis of 
either regression, or some combination 
(e.g., the usual pooled within -group 
estimator), it is hard to say in general 
how badly he will miss the correct 
given in (4.15) . 

There is one special, though rather 
trivial, case where *. This 
occurs when o2 =o2=0 and =t . 

That is, all 
TC T o 

individuals in both groups "fan out" from 
the same starting point to. In that case 

ßo= * . Thus, linear adjustments 

can be expected to perform well in situ- 
ations approximated by this model. 

On the other hand, suppose TC 
but that We showed above that 
gain scores (ß =1) is appropriate. How- 
ever, in this case ßc ßp and moreover both 

and are greater than 1. 



We can say in general that if 
our linear model is approximately 
correct, we would expect the data to re- 
flect different regressions in the two 
groups, and that linear adjustment 
strategies will not be very effective in 
removing bias. Moreover, we have shown 
that while there are special situations 
where linear adjustment does well and 
special situations where gain scores are 
appropriate, there is no situation where 
both can be expected to work well. 

5.0 Computer Simulation 

5.1 The Simulation Program 
In the previous section we developed 

some analytic results for the linear case. 
The component for the assignment model, 
however, is particularly difficult to 
manipulate analytically. Moreover, con- 
clusions cannot easily be drawn for the 
more complicated growth and treatment 
effect models or for the non -linear ad- 
justment strategies such as standardi- 
zation. Thus, we resort to simulation. 

We have developed a general FORTRAN 
IV computer program to generate and 
analyze data under a broad range of con- 
ditions as described in sections 2 and 
3. Our main purpose is to assess the 
ability of various adjustment strategies 
to remove bias in quasi -experimental 
studies involving growth systems. For 
each set of conditions (a growth system, 
a treatment effect model, and an assign- 
ment procedure), we define the theoreti- 
cal treatment effect by 

T = Ep[S(t2) - G(t2)] 

where the expectation is over the distrib- 
ution of individuals assigned to the pro- 
gram group. For each analysis strategy 
there is an estimator R. Thus, we can 
define the bias of any analysis strategy 
as 

BIAS = E(R) - 

Two features built into the simu- 
lation program are worthy of comment. 
First, we place certain constraints on 
our simulations in order to generate 
"reasonable" data. The basic statistics 
for each generated data set are examined 
according to a set of reasonableness 
criteria: If a data set fails to pass 
any one of the criteria, it is rejected 
from the simulation run. If a particular 
simulation run (i.e. a growth system, an 
assignment procedure, and a treatment 
effect model) has more than 5% rejected 
data sets, the run is terminated. In 
this manner, we seek to guarantee that 
condidtions utilized in the simulation 
may be a reasonable reflection of data 
sets seen in common practice. 

Second, a flexible simulation ter- 
mination procedure is built into the 
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program. A maximum number of runs (RMAX 
=350) is specified, but we can terminate 
the simulation when sufficient accuracy 
is achieved. 

5.2 Simulation Results 
Table 2 presents the two treatment 

effects models for which simulation runs 
were carried out. Each of these was 
combined with each of eight different 
growth conditions (see table 3) and six 
assignment models (see table 4). For 
each interactive model and each of the 
16 strategies, the bias is presented in 
table 5. Lack of space prevents us from 
presenting the constant treatment effect 
results. However, the following obser- 
vations are based on the entire set of 
runs. 

Several interesting patterns can be 
observed in the simulation results: 

(1) As predicted in section 4, non- 
random assignment on the basis of to but 
not on II, results in substantial bias for 
all techniques except gain scores, 
(strategy 2). 

(2) The value -added technique 
(strategy 10) performs best in general 
over the range of conditions considered 
here. The Belson ANCOVA with reliability 
correction based on both age and pre -test 
(strategy 15) also does well. The need 
to know the pre -test reliability, however, 
is a limitation of this approach. 

(3) When the treatment effect inter- 
acts with individual characteristics, 
strategies based primarily on the pre -post 
relationship in the control group only, 
(strategies 7, 8, 14, 15) perform con- 
sistently better than the corresponding 
strategies based on relationships in both 
groups (strategies 5, 6, 12, 13). This 
makes sense intuitively, since the inter- 
active treatment can change the pre -post 
relationship in the program group but not 
the control group. 

(4) When assignment of subjects to 
groups is based on either (but not both) 
of the growth parameters (assignment sets 
1 and 2) or on both operating to create 
bias in the same direction (assignment 
set 6), all adjustment strategies reduce 
the initial bias. 

(5) When the assignment is based on 
both and to in such a way that they tend 
to create biases in opposite directions 
(assignment sets 3, 4, 5), no adjustment 
strategy does well.. In fact, almost all 
strategies considered do worse across all 
the growth conditions. 
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Table 1 
The Lineup psis Strategies 

1) Difference of Post -test means 
2) Raw gains 
3) Standardized gains 
4) Residual analysis (pre -test only) 
5) ANCOVA- pooled within grp. regression(pre -test) 
6) ANCOVA with reliability correction 
7) Belson ANCOVA- control grp. regres. (pre -test) 
8) Belson ANCOVA w. reliability correction 
9) Subclassification (pre -test) 

10) Value -added 
11) Residual analysis (pre -test and age) 
12) ANCOVA (pre -test and age) 
13) ANCOVA w. reliability correction (pre -test & age 
14) Belson ANCOVA (pre -test and age) 
15) Belson ANCOVA w. reliability correction 
16) Subclassification (pre -test and age) 
Table 2: Treatment Effect Models 

Type Treatment 

constant incre- 
ment for all - 
subjects 

interactive treat- DI 
[ 100 G ( t) ] 

meet effort: 
impact for where .0001) 

individuals with low i 

status and Gi (t) < 100 

Table 3: Growth Parameter Conditions for 
the Linear System 

Growth 
Conditions 1 2 3 4 5 6 7 8 

Ud 9 9 9 9 9 9 9 9 

d 
.6 .3 .6 .3 .6 .3 .6 .3 

2.5 2.5 2.5 2.5 5.0 5.0 5.0 5.0 

.4 .4 .8 .8 .4 .4 .8 .8 

Distributions of d and are assumed to 
be normal 

Distribution of b is uniform (0,6) for 
all cases. 

Table 5 (next page) 
Simulation Results 
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LINEAR SYSTEM WITH AN INTERACTIVE TREATMENT EFFECT 

Analysa 

wto- 

Distributions 

0 w = .20 wd .8 

for the trowth parameters 

wto- -.20 w as .20 wd .6 

Distributions for the Growth Parameters 

Strateg 1 2 3 4 5 6 7 8 1 21 3z 4 5 6 7 8 

1 -2.8T-3.02 -4.21 -4.04 -2.85 -2.85 -4.11 -4.06 -5.32 -6.92 -6.84 -7.09 -7.14 -8.31 -8.57 
2 -1.85 -1.93 -2.81 -2.66 -1.93 -1.89 -2.83 -2.70 -2.45 -3.52 -3.48 -2.51 -2.42 -3.35 -3.49 
3 -1.23 -1.20 -1.61 -1.44 -1.77 -1.72 -2.44 -2.26 - .50 - .52 - .45 -1.78 -1.55 -1.84 -1.82 
4 -2.01 -2.14 -2.65 -2.50 -2.11 -2.08 -2.91 -2.78 -3.35 -3.67 -3.66 -3.52 -3.49 -3.96 -4.11 
5 -1.75 -1.82 -.232 -2.16 -1.97 -1.93 -2.77 -2.62 -2.18 -2.34 -2.31 -2.79 -2.68 -3.19 -3.26 
6 -1.56 -1.60 -2.06 -1.87 -1.92 -1.88 -2.70 -2.54 -1.62 -1.72 -1.63 -2.56 -2.44 -2.92 -2.98 
7 -1.63 -1.70 -2.19 -2.01 -1.85 -1.81 -2.60 -2.44 -1.85 -2.01 -1.96 -2.26 -2.12 -2.58 -2.63 
8 -1.42 -1.44 -1.91 -1.71 -1.80 -1.76 -2.52 -2.35 -1.24 -1.34 -1.23 -2.00 -1.86 -2.28 -2.32 
9 -1.43 -1.49 -2.04 -1.92 -1.67 -1.67 -2.51 -2.34 -2.15 -2.61 -2.35 -2.62 -2.43 -3.20 -3.26 

10 - .72 - .90 -1.27 -1.12 - .58 - .88 -1.40 -1.37 - .90 -1.57 -1.49 -1.21 -1.31 -1.42 -1.65 
11 -2.04 -2.18 -2.46 -2.28 -2.11 -2.01 -2.62 -2.36 -3.45 -3.74 -3.80 -3.50 -3.44 -3.76 -3.86 
12 -1.52 -1.55 -1.82 -1.61 -1.78 -1.64 -2.24 -1.93 -2.13 -2.26 -2.31 -2.62 -2.47 -2.82 -2.82 
13 - .89 - .68 -1.15 - .82 -1.51 -1.25 -1.86 -1.42 -1.22 -1.32 -1.30 -2.14 -1.88 -2.24 -2.11 
14 -1.40 -1.45 -1.63 -1.42 -1.68 -1.54 -2.08 -1.76 -1.86 -2.01 -2.05 -2.14 -1.96 -2.29 -2.31 
15 - .58 - .32 - .81 - .43 -1.37 -1.08 -1.63 -1.15 - .87 -1.00 - .92 -1.63 -1.35 -1.67 -1.57 
16 -2.03 -2.20 -2.65 -2.36 -2.23 -2.15 -2.94 -2.81 -2.87 -3.29 -3.27 -3.41 -3.20 -3.81 -4.03 

136 runs. 2336 runs. 

.20 w .40 .4 -.2 w 0 .8 

1 -6.13 -6.27 -9.62 -9.83 -4.37 -3.97 -7.42 -7.65 -1.42 -1.51 -1.50 -1..Z2 -2.85 -2.96 -2.93 -3.17 
2 -5.38 -5.39 -7.68 -7.84 -5.37 -5.36 -7.61 -7.75 .05 - .10 - .12 - .03 - .05 - .11 - .02 .08 

3 -4.94 -4.85 -6.22 -6.29 -5.53 -5.60 -7.66 -7.79 1.05 .91 1.08 1.23 .45 .42 .91 .97 

4 -5.46 -5.51 -7.46 -7.61 -5.46 -5.47 -7.68 -7.82 - .24 - .36 - .01 .12 - .56 - .64 - .26 - .33 

5 -5.30 -5.29 -7.09 -7.21 -5.36 -5.34 -7.61 -7.77 .25 .09 .37 .51 - .15 - .22 .16 .14 

6 -5.15 -5.10 -6.75 -6.82 -5.41 -5.41 -7.62 -7.77 .54 .39 .63 .80 - .00 -.08 .32 .31 

7 -5.24 -5.22 -7.02 -7.17 -5.45 -5.47 -7.63 -7.76 .47 .30 .58 .71 .22 .17 .59 .58 

8 -5.09 -5.02 -6.67 6.77 -5.51 -5.55 -7.64 -7.77 .80 .64 .86 1.03 .38 .33 .78 .78 

9 -5.07 -5.12 -6.99 -7.20 -5.32 -5.33 -7.50 -7.70 .51 .39 .81 .96 .24 .21". .51 .53 

10 -2.55 -2.63 -3.49 -3.97 -2.78 -2.72 -3.63 -3.68 .19 .18 .38 .02 .03 -.11 .29 - .20 

11 -6.92 -7.32 -8.32 -8.69 -5.86 -6.08 -7.52 -7.63 - .68 - .95 -.71 - .80 - .78 - .89 - .66 - .93 

12 -4.94 -4.82 -5.87 -5.77 -5.00 -4.79 -6.48 -6.22 .05 - .20 - .05 - .07 - .23 - .33 - .11 - .29 

13 -3.29 -2.39 -4.08 -3.32 -4.39 -3.76 -5.59 -4.87 .23 - .10 .07 - .03 - .10 - .22 .02 - .21 

14 -4.92 -4.84 -5.63 -5.45 -5.23 -5.16 -6.67 -6.25 .25 - .02 .11 .08 .12 .02 .27 .06 

15 -2.24 - .81 -2.71 - .89 -4.43 -3.72 -5.43 -4.11 .44 .09 .24 .14 .27 .13 .40 .16 

16 -6.75 -7.07 -8.76 -9.09 -6.26 -6.58 -8.55 -8.91 .04 - .18 .02 .11 - .22 - .32 - .14 .07 

wt .40 w - .40 w .2 = wto .40 w .20 
d 

.4 

1 2 3 4 51 62 7 8 1 2 3 4 51 62 73 84 

1 -4.55 -4.37 -8.11 -7.91 -3.81 -3.47 - .05 - .01 -1.64 -1.75 

2 -5.86 -5.79 -8.30 -8.17 -8.32 -8.15 -2.86 -2.85 -.397 -4.02 

3 -6.68 -6.72 -8.44 -8.38 -9.76 -9.83 -4.82 -4.89 -5.97 -6.05 

4 -6.35 -6.37 -8.46 -8.36 -9.31 -9.32 -4.37 -4.45 -5.49 -5.56 

5 -6.08 -6.06 -8.35 -8.26 -9.01 -8.99 -3.35 -3.38 -4.92 -4.99 

6 -6.35 -6.38 -8.39 -8.32 -9.28 -9.28 -3.93 -4.02 -5.37 -5.47 

7 -6.17 -6.14 -8.35 -8.27 -9.35 -9.31 -3.58 -3.53 -5.07 -5.13 

8 -6.45 -6.47 -8.38 -8.33 - -9.64 -9.62 -4.20 -4.20 -5.54 -5.64 

9 -5.88 -5.88 -8.19 -8.17 -9.12 -9.24 -3.21 -3.14 -4.59 -4.65 

10 -2.64 -2.78 -3.78 -4.11 -4.22 -3.97 -1.12 -1.37 -1.83 -1.92 

11 -9.75 -10.61-11.57-12.15 -9.72 -9.92 -6.02 -6.69 -6.78 -7.25 

12 -6.21 -6.30 -7.75 -7.58 -8.16 -7.77 -2.76 -2.68 -3.44 -3.19 

13 -4.42 -3.50 -5.65 -4.49 -7.29 -6.30 -2.20 -1.58 -2.70 -2.02 
14 -6.67 -6.93 -7.88 -7.63 -8.81 -8.53 -3.17 -3.05 -3.49 -3.09 

15 -1.08 .37 -3.80 .44 -7.42 -5.92 -2.18 - .80 -2.14 - .64 

16 -8.98 -9.51 -11.52-12.07 -10.42 -10.98 -.47 -4.97 -5.59 -6.10 

152 runs. 262 runs. 116 runs. 220 runs. 355 runs.423 runs. 

Table 4: Non Random 

Weights 
wtoi 

-.2 0 .6 

.2 .6 

.4 .4 .2 
. 2 .4 .4 

. 4 .2 .4 
-.2 .2 .6 

Assignment Conditions Considered in this Simulation 

Process Description of Individuals Assigned 
to the Control Group 

early starters 
fast growers 
late starters, but fast growers 
late starters, but fast growers 
late starters, but fast growers 
early starters and fast growers 
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